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Abstract – This study, the role and effects of Floquet Bloch theory on partial differential equations with 

periodic coefficients were investigated. Results are given about the Floquet expansions of arbitrary 

solutions, the solvability of non-homogeneous equations, the existence and structure of solutions, especially 

for boundary value problems that arise in applications of Schrödinger equations. This theory is of great 

importance for the quantum theory of solids, the theory of waveguides, scattering theory and other fields 

of mathematical and theoretical physics. 
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I. INTRODUCTION 

   Floquet-Bloch theory appears in mechanical 

systems. It is a theory that deals with wave 

propagation problems. In layered systems, the 

heterogeneity feature of elastic structures enables 

certain wave patterns to physically propagate 

throughout the structure [1]. These models are 

defined by a function of time frequency and 

wavenumber and are generally nonlinear. The 

curves given in this way are called distribution 

curves and affect the entire oscillatory behavior of 

the system. Therefore, their calculation is very 

important in applying the equations [2]. 

 Vibrations are also prominent in objects with a 

periodic structure [3]. These problems are usually 

divided into time- and space-dependent parts of the 

solution. For example, the Helmholtz equation 

corresponds to an equation that describes spatial 

behavior [4]. Here the physical periodic structure of 

the object under study translates into the periodicity 

of its coefficients. Therefore, Floquet-Bloch theory 

has found different applications to study and 

investigate the distribution properties of different 

mechanical periodic systems [5], [6]. Many 

structures, mostly civil engineering structures [2], 

[3], optical [10], [11], or electromagnetic [12], can 

be considered as infinitely large layered systems. In 

periodic systems controlling electronic devices, 

vibroacoustic diffusion of waves has been 

optimized to calculate wave dispersion in damped 

mechanical systems [13]. Numerical approaches to 

this calculation are modeled in the direction of wave 

propagation by applying the finite element method 

and using a harmonic function [14]. An eigenvalue 

problem is modeled by introducing the 

displacement field into the auxiliary equations. 

Solving the eigenvalue problem for a given 

frequency serves to obtain the wave numbers of all 

propagation modes. 
In this study, the role and effects of Floquet Bloch 

theory for partial differential equations with 

periodic coefficients are investigated. In particular, 

boundary value problems that arise in applications 

for Schrödinger equations are investigated, and 

results are given about the completeness of the 

Floquet solution set, Floquet expansions of arbitrary 

solutions, and the solvability of non-homogeneous 

equations. This theory is of great importance for the 

quantum theory of solids, the theory of waveguides, 

scattering theory and other fields of mathematical 

and theoretical physics. 

 

II. MATERIALS AND METHOD 
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    The Schrödinger Equation in a Periodic Potential 

 Four Schrödinger equations can be written for a 

particle of mass 𝑚 in the periodic potential 𝑉(𝑥). 

𝐻𝜑 =  {
−ℎ2𝛻2 

2𝑚
+ 𝑉(𝑥)}𝜑 =  𝐸𝜑 .                                 (1)                                                                          

Here we write the potential as a Fourier series 

 

             𝑉 (𝑥)  = ∑ 𝑉𝑃 𝑃 𝑒𝑖𝑃𝑥 ,                    (2)   
where P are mutual lattice vectors. We can 

determine the source of potential energy wherever 

we want. To make subsequent derivations easier, 

let's take the potential as 𝑉0 = 0. 

We can write the wave function ψ as the sum of 

plane waves obeying the Born-von Karman 

conditions, 

            𝜑(𝑥)  = ∑ 𝐶𝑘 𝑘 𝑒𝑖𝑘𝑥                                        (3)                   

This ensures that ψ also obeys the Born-von Karman 

boundary conditions. Now, by substituting the wave 

equation in (3) and the potential equation in (2), we 

will obtain the Schrödinger equation in (1), 

       ∑
ℎ2𝑘2

 

2𝑚
 𝐶𝑘 𝑘 𝑒𝑖𝑘𝑥+{ ∑ 𝑉𝑃 𝑃 𝑒𝑖𝑃𝑥}{ ∑ 𝐶𝑘 𝑘 𝑒𝑖𝑘𝑥}= 

                     𝐸 ∑ 𝐶𝑘 𝑘 𝑒𝑖𝑘𝑥.                                        (4)         
 

If we rewrite the potential energy 

            𝑉(𝑥)𝜑 = ∑ 𝑉𝑃 𝐶𝑘 𝑃,𝑘 𝑒𝑖(𝑘+𝑃)𝑥,                      (5)                                                                               

where the sum on the right side is over 𝑃 and 𝑘. 

Sum, can be rearranged as follows, 

 

         𝑉 (𝑥)𝜑 = ∑ 𝑉𝑃 𝐶𝑘−𝑃 𝑃,𝑘 𝑒𝑖𝑘𝑥 ,    
                        (6)                                                                             

Therefore the Schrödinger equation in (4) becomes 

 

       ∑ 𝑒𝑖𝑘𝑥((
ℎ2𝑘2

 

2𝑚
− 𝐸) 𝐶𝑘 𝑘   + ∑ 𝑉𝑃 𝐶𝑘−𝑃 𝑃 )  = 0. 

 
Since Born-von Karman plane waves are a set of 

orthogonal functions, the coefficient of each term is 

the sum must be zero (we can get this by multiplying 

by a plane wave and integrating), so, 

          (
ℎ2𝑘2

 

2𝑚
− 𝐸) 𝐶𝑘 + ∑ 𝑉𝑃 𝐶𝑘−𝑃 𝑃 = 0.                  (7)                                                                                    

 

(7) is taken as 𝑉𝑃 = 0. It would be convenient to deal 

only with solutions in the first Brillouin zone 

(anyway we can see that this gives all the necessary 

information about the k-space). So we write 𝑘 =
 (𝑞 −  𝑃′), where 𝑞 is in the first Brillouin zone and 

𝑃′ is the reciprocal lattice vector. Equation in (7) can 

then be rewritten 

 

   (
ℎ2(𝑞 − 𝑃′)2 

2𝑚
− 𝐸) 𝐶𝑞 − 𝑃′ + ∑ 𝑉𝑃 𝐶𝑞 − 𝑃′−𝑃 𝑃 = 0.                                                                                                        

Here, if we change the variables to be 𝑃′′ → 𝑃 +
 𝑃′, 

(
ℎ2(𝑞 − 𝑃′)2 

2𝑚
− 𝐸) 𝐶𝑞 − 𝑃′ + ∑ 𝑉

𝑃′′−𝑃′ 
𝐶𝑞 − 𝑃′′ 𝑃 = 0.    

(8)                                                                           

This specifies 𝐶𝑘 , which is used to generate the 

wave function 𝜑 in equation (3). 

     Bloch’s Theory 

     Equation in (8) includes only coefficients 𝐶𝑘  

where 𝑘 =  𝑞 −  𝑃; In other words, if we choose a 

particular value of q, then the only 𝐶𝑘  found in it will 

have the property. Equation in (8) is in the form 

𝐶𝑘−𝑃 ; these coefficients specify the shape of the 

wave function. 

Therefore, for every different value of q, there is a 

wave function 𝜑𝑞(𝑥) that takes the form: 

 

           𝜑𝑞(𝑥)=∑ 𝐶𝑞 – 𝑃 𝑃 𝑒𝑖(𝑞 – 𝑃 )𝑥 ,                                      (9)                                                                                         

    We obtained the equation by substituting  𝑘 =
 𝑞 −  𝑃  in equation (3). If equation (9) is rewritten 

 

         𝜑𝑞(𝑥)  = 𝑒𝑖𝑞𝑥 ∑ 𝐶𝑞 – 𝑃 𝑃 𝑒−𝑖𝑃𝑥 ,                    (10) 

This represents a plane wave with a wave vector 

within the first Brillouin zone. This allows us to 

reach Bloch's theorem, “Eigenstates of the one-

electron Hamiltonian  
𝐻 =  

−ℎ
2

𝛻2
 

2𝑚
+ 𝑉(𝑥)  where 𝑉 (𝑥 +  𝑇) =  𝑉 (𝑥), 𝑇 can 

be chosen as a plane for all Bravais lattice 

translation vectors a function with the periodicity of 

the wave times the Bravais lattice. 

 

     Floquet Theory 

     The Schrödinger equation is taken in natural 

units as follows and Liouville the normal form is 

called, 

         
−ℎ

2
𝛻2

 

2𝑚
+ 𝑉(𝑥)}𝜑 =  𝜆𝐸𝜑 .               (11) 

                                       

(11) ordinary differential equation it is called the 

time-independent Schrödinger equation. Here 𝐸 

eigenvalue an energy level and its eigenfunctions 

are the wave corresponding to a particle represents 

the function. We can write the Schrödinger equation 

given in (11) in another way as follows, 

 

         𝜑′′(𝑥) = (𝑉(𝑥) − 𝜆𝐸)𝜑(𝑥)                                    (12)                                                                                                             
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    The two linearly independent solutions of 

equation (12) are 𝜑1(𝑥) and 𝜑2(𝑥), and the general 

solution of the equation is their linear combination. 

 

Lemma 2.1.Any two solutions of the equation (12), 

𝜑1(𝑥) and 𝜑2(𝑥) a necessary and sufficient 

condition for linear independence is that their 

Wronskian is zero is that it is different. 

 

Proof. Let's assume that 𝑊 [𝜑1
(𝑥), 𝜑2(𝑥) ] ≠ 0. 

Let us show that it is linearly independent. 

Let 𝜑1(𝑥) and 𝜑2(𝑥)  be linearly dependent. That 

is, let c and d be constants and  

 

𝜑1(𝑥)= c 𝜑2(𝑥) or 𝜑2(𝑥) = d 𝜑1(𝑥) 

𝑊 [𝜑1(𝑥), 𝜑2(𝑥)]= 𝑊[c 𝜑2(𝑥), 𝜑2(𝑥)]    

                                = 𝑐 𝑊 [𝜑2(𝑥), 𝜑2(𝑥)]  =  0 

is obtained. This is the contradiction. Similarly, if 

we take 𝜑2(𝑥) = d 𝜑1(𝑥) again the contradiction is 

aged. Any two linearly independent solutions of 

equation (11), let us show that their Wronskian is 

not zero. 

     Let 𝑊 [𝜑1(𝑥), 𝜑2(𝑥)]  = 0. Considering the 

point 𝑥0∈(−∞, ∞), 𝑎1 and 𝑎2, let's write the 

following system of equations according to the 

numbers below. 

 

          𝑎1𝜑1(𝑥0)+ 𝑎2𝜑2(𝑥0) = 0 

           𝑎1𝜑′
1

(𝑥0)+ 𝑎2𝜑′
2

(𝑥0) = 0,                    (13) 

On assumption, 

 

|
𝜑1(𝑥0) 𝜑2(𝑥0)

𝜑′
1

(𝑥0) 𝜑′
2

(𝑥0)| =  𝑊 [𝜑1(𝑥0), 𝜑2(𝑥0)]  =  0. 

Since the determinant is zero, the system has at least 

one non-zero 𝑎1 and 𝑎2 there is a solution. Like this 
𝜔(𝑥)  =  𝑎1𝜑1(𝑥)+ 𝑎2𝜑2(𝑥) becomes the solution 

of equation (12). 

 

         𝜔(𝑥0)  =  0, 𝜔′(𝑥0)  =  0,                         (14) 

 

Since it is valid for existence and uniqueness 

theorem according to  

 

          𝑎1𝜑1(𝑥)+ 𝑎2𝜑2(𝑥) =0.  

 

Thus, since it is shown that 𝜑1(𝑥) and 𝜑2(𝑥) are 

linearly dependent the contradiction is obtained. 

Therefore, Wronskian cannot be zero. 

 Let's take the basic solution system of the equation 

(12). As such solutions, 

 
𝜃(𝑥, 𝜆): 𝜃(0) = 1 , 𝜃′(0) =  0  

 𝜑(𝑥, 𝜆): 𝜑(0) = 0 , 𝜑′(0) =  1 

Δ(𝜆)= 𝜃(𝑥) + 𝜑′(𝑥).  Let's define it as 

 

𝜒1(𝑥) =  𝑒−µ(𝑥)𝜑1
(𝑥), 𝜒2(𝑥) =  𝑒µ(𝑥)𝜑2

(𝑥). 

 

Definition 2.2 (Floquet Formula): General solution 

of equation (11), 𝑐1 and 𝑐2 is any two constant 

numbers and 

 

𝜑1(𝑥) = 𝑒µ(𝑥)𝜒1
(𝑥), 𝜑2(𝑥) = 𝑒−µ(𝑥)𝜒2

(𝑥)  

to be, 

𝜑(𝑥) = 𝑐1𝑒µ(𝑥)𝜒1
(𝑥) + 𝑐2𝑒−µ(𝑥)𝜒2

(𝑥),                (15) 

 

happens, this formula is called Floquet Formula. 

 

Theorem 2.3.(Floquet Theorem):  

Let λ ∈ (−∞, ∞). 

i)If | Δ(𝜆)| > 2, (12) the differential equation is 

unstable. 

ii) If | Δ(𝜆)| < 2, (11) the differential equation is 

stable. 

iii) If | Δ(𝜆)| = 2, (11) differential equation, if 

𝜃′(𝑥, 𝜆) =  𝜑(𝑥, 𝜆) =  0, at least one of the 

stable 𝜃′(𝑥, 𝜆) and 𝜑(𝑥, 𝜆) if it is different from 

zero, it is conditionally stable. 

b) If Imλ ≠ 0, the differential equation (12) is 

unstable for this value λ. 

 

Proof. i)If Δ(𝜆) > 2, 

 𝑒µ(𝑥) and 𝑒−µ(𝑥) since there are unbounded functions, 

for every 𝑥 ∈ (−∞, ∞), 
 

𝜑(𝑥) = 𝑐1𝑒µ(𝑥)𝜒
1
(𝑥) + 𝑐2𝑒−µ(𝑥)𝜒

2
(𝑥), 

 

are unlimited functions. Then λ is the instability 

point of equation (12). 

 

If Δ(𝜆) < 2, 𝑒
(µ+i

π

𝑥
 )(𝑥)

 and 𝑒−(µ+i
π

𝑥
 )(𝑥)

 since there are 

unbounded functions, for every 𝑥, 
 

𝜑(𝑥) = 𝑐1𝑒
(µ+i

π

𝑥
 )(𝑥)

𝜒
1
(𝑥) + 𝑐2𝑒

−(µ+i
π

𝑥
 )(𝑥)

𝜒
2
(𝑥), 

 

are unlimited functions. Then λ is the instability 

point of equation (12). 
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ii) If | Δ(𝜆 | < 2, β1 and β2 are complex numbers and 

β1 = 𝑒iαx  and β2 = 𝑒−iαx;  𝑒iαx and 𝑒−iαx since are 

bounded functions; 

𝜑1(𝑥) = 𝑐1𝑒iαx  𝜒
1
(𝑥), 𝜑2(𝑥) = 𝑐1𝑒iαx  𝜒

2
(𝑥), 

 

its functions are limited. Here λ is the stability point 

of equation (12). 

 

iii) Let 𝜑∗(𝑥) be a linearly independent solution of 

the equation (12) with 𝜑1(𝑥). Since the function 

𝜑∗(𝑥 + 𝑇)  is also the solution of (12), 𝑑1 and 𝑑2 are 

constants. 

 

𝜑∗(𝑥 + 𝑇)= 𝑑1 𝜑1(𝑥) + 𝑑2 𝜑∗(𝑥) 

 𝑊 [𝜑1(𝑥 + 𝑇), 𝜑∗(𝑥 + 𝑇)] =  𝑊 [𝜑1(𝑥 +
     𝑇), 𝑑1𝜑1(𝑥) +  𝑑2𝜑∗(𝑥)]  
                          =  𝑑1𝑊 [𝜑1(𝑥 + 𝑇), 𝜑1(𝑥)] +
 𝑑2𝑊 [𝑦𝜑1(𝑥 + 𝑇), 𝜑∗(𝑥)] 
                             = 𝑑1𝛽 𝑊 [𝜑1(𝑥), 𝜑1(𝑥)]  +
 𝑑2 𝛽 𝑊 [𝜑1(𝑥), 𝜑∗𝑥) ] 
 

𝑊 [𝜑1(𝑥 + 𝑇), 𝜑∗𝑥 + 𝑇)] =
 𝑑2 𝛽 𝑊 [𝜑1(𝑥), 𝜑∗𝑥) ] 
 

obtained. Since Wronskian is point independent 

𝑑2 𝛽 = 1. Like this 𝛽 = 𝑑2 since 

 

𝜑∗(𝑥 + 𝑇)= 𝑑1𝜑1(𝑥) + 𝛽𝜑∗(𝑥). 

 

If 𝑑1   =  0 ,  𝜑∗(𝑥 + 𝑇)  =  𝛽𝜑∗(𝑥) since |𝜑∗(𝑥 +

𝑇)|  =  |𝜑∗(𝑥)| obtained. |𝜑∗(𝑥)| onward it is a 

periodic function, it is limited.  

 

Let 𝑑1 ≠  0.  β = 𝑒µx where 

 𝜒1(𝑥) =  𝑒−µ(𝑥)𝜑1
(𝑥) , 

𝜒2(𝑥) =  𝑒−µ(𝑥)𝜑∗(𝑥)- 
𝑑1 

β
𝑥𝜒1

(𝑥)  

let it be defined as.  

The function 𝜒1
(𝑥) is periodic and the periodicity of 

𝜒2(𝑥)can be shown as follows, 

 

𝜒2(𝑥 + 𝑇)  =   𝑒−µ(𝑥+𝑇) 𝜑∗(𝑥 + 𝑇)  

                                  − 
𝑑1 

β
(𝑥 + 𝑇)𝜒1

(𝑥 + 𝑇) 

 

    =  𝑒−µ𝑥𝑒−µ𝑇 [𝑑1 𝜑1(𝑥)  + 𝛽 𝜑 ∗ (𝑥)]                   

                                   − 
𝑑1 

β
𝑥 𝜒1

(𝑥)  −
𝑑1 

β
 𝜒1

(𝑥) 

 

=  𝑒−µ𝑥 𝑒−µ𝑇𝑑1 𝜑1(𝑥) + 𝑒−µ𝑥 𝑒−µ𝑇 𝛽 𝜑∗(𝑥)) 

−
𝑑1 

β
𝑥 𝜒1

(𝑥)  −
𝑑1 

β
 𝜒1

(𝑥) 

 

     =  𝑒−µ𝑇𝑑1 𝜑1(𝑥)  + 𝑒−µ𝑥𝜑∗(𝑥)   

                             −
𝑑1 

β
𝑥 𝜒1

(𝑥)  −
𝑑1 

β
 𝜒1

(𝑥) 

 

                         =  
1 

β
𝑑1 𝜑1(𝑥) + 𝑒−µ𝑥 𝜑∗(𝑥)  

                       −
𝑑1 

β
𝑥 𝜒1

(𝑥)  −
𝑑1 

β
 𝜒1

(𝑥) =  𝜒2
(𝑥) 

Two linearly independent solutions of equation (12) 

are as follows, 

𝜑1(𝑥) = 𝑒µx𝜒
1
(𝑥), 

𝜑∗(𝑥) = 𝑒µx {
𝑑1 

β
𝑥 𝜒

1
(𝑥)  −

𝑑1 

β
 𝜒

1
(𝑥)} 

The first of these solutions, namely 𝜑1(𝑥) is limited, 

second solution 𝜑∗(𝑥) is unlimited. 

III. RESULTS 

      Floquet Bloch theory is a manifestation of the 

Schrödinger equation in the periodic potential. It is 

used to describe the wave function of an electron in 

a crystal lattice where the potential experienced by 

the electron is periodic in space. Here, the role and 

effects of Floquet Bloch theory on partial 

differential equations with periodic coefficients are 

investigated. 
IV. DISCUSSION 

 This theory is specifically used to support the 

behavior of a particle moving under a uniform force. 

Its importance emerges in the following areas, in 

materials science, it is used to analyze the electronic 

properties of crystals. How electrons behave within 

the crystal structure can help determine the 

properties of materials and their properties, such as 

conductivity. 

 

V. CONCLUSION 

    Boundary value problems that arise in 

applications of Schrödinger equations have 

solutions with important results. With Floquet 

Bloch theory, useful results are found about the 

completeness of solutions, Floquet expansions of 

arbitrary solutions and therefore the solvability of 

equations. This theory occupies an important place 

in the quantum theory of solids, the theory of 

waveguides, scattering theory and other fields of 

mathematical and theoretical physics. 
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