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Abstract – Iterative Learning Control (ILC) is a method used extensively in repetitive control tasks to 

improve performance over time by learning from past iterations. However, traditional ILC methods often 

struggle with dynamic environments and require manual tuning for optimal performance. This study 

introduces a novel approach by integrating Deep Q-Learning (DQL) with ILC, forming an enhanced 

system. The DQL component adaptively tunes the learning parameters of ILC based on performance 

feedback, aiming to improve error reduction, adaptability, and convergence speed. The methodology 

involved developing a custom simulation environment to test the system under various conditions. The 

system was evaluated based on its ability to reduce cumulative error, adapt to changes, and achieve faster 

convergence. The results demonstrated that the system significantly outperformed traditional ILC 

methods in all assessed metrics.  
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I. INTRODUCTION 

In the realm of control systems, Iterative 

Learning Control (ILC) emerges as a robust 

methodology, particularly beneficial in systems 

requiring repetitive actions. ILC leverages the error 

trajectories from previous iterations to improve the 

control actions incrementally. This method has 

found extensive applications in various sectors, 

including manufacturing, robotics, and stroke 

rehabilitation [10-15]. The core principle of ILC is 

to reduce the error in each successive iteration of a 

task, thereby gradually enhancing system 

performance and precision [10, 11]. 

Traditional ILC assumes that the system 

dynamics are consistent across iterations. 

However, real-world scenarios often involve 

dynamic environments where system parameters 

and external conditions can vary unpredictably. 

This variation introduces complexities that 

traditional ILC may not handle effectively, leading 

to suboptimal performance and reduced 

adaptability. Moreover, the determination of 

appropriate learning rates and the assurance of 

convergence in ILC systems often require intricate 

tuning and deep domain expertise, presenting 

additional challenges in complex and uncertain 

environments [12]. 

This results a growing interest in integrating ILC 

with advanced machine learning techniques, such 

as Deep Q-Learning (DQL). DQL, a variant of 

deep reinforcement learning (DRL), offers a 

model-free approach that can adapt to changing 

environments and learn optimal strategies through 

interaction with the system. This means more 

flexible and adaptive control mechanism capable of 

handling nonlinearities and uncertainties more 

effectively. This integrated approach leverages the 

strengths of both methodologies to achieve 

superior performance, especially in terms of 

adaptability and convergence rate [1,3] 

The integration of DQL into ILC represents a 

paradigm shift in learning control strategies, 

aiming for a robust and adaptive system capable of 

addressing the inherent limitations of traditional 

ILC. By adaptively tuning the learning rate and 

other parameters in response to the observed 

performance, the system can potentially overcome 
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the challenges of dynamic environments and 

complex system dynamics.  

This paper details development and application 

of a Deep Q-Learning enhanced ILC system. A 

sophisticated framework that combines the 

conventional ILC with a DQL agent, which 

adaptively adjusts learning parameters based on 

performance metrics. The goal is to demonstrate 

through empirical evidence that the system can 

achieve faster convergence, higher adaptability, 

and overall superior performance in comparison to 

its traditional counterparts [7, 9, 11].  

II. MATERIALS AND METHOD 

The methodology for developing and evaluating 

the Deep Q-Learning enhanced Iterative Learning 

Control (ILC+DQL) system involves a structured 

approach encompassing the design of the 

integrated framework, the establishment of a 

simulation environment, the implementation of 

algorithms, and the definition of evaluation 

metrics.  

A. Development of ILC+DQL Framework 

The ILC+DQL framework combines the precise 

trajectory tracking of ILC with the adaptive 

learning capabilities of DQL. The development 

involves (1) ILC which iteratively improves the 

control input by learning from previous errors [10-

12] and (2) DQL, a RL technique, adaptively tunes 

the learning parameters of ILC based on 

performance feedback. This integration draws 

inspiration from the RL applications in control 

systems [1,7].  

In order to measure the performance a custom 

simulation environment is made to emulate a 

variety of control tasks and dynamic conditions, 

allowing for a robust evaluation of the ILC+DQL 

system. The environment is designed to be flexible, 

enabling the simulation of different scenarios [5, 8, 

9]. A range of conditions and challenges typical in 

control tasks, drawing upon the real-world 

applicability [1,5]. ILC algorithm is implemented 

using a standard approach, with the introduction of 

DQL-adjusted learning rates and error correction 

strategies [11,14]. The DQL is employed a neural 

network to approximate the Q-function, with states 

representing system performance and errors, and 

actions corresponding to adjustments in ILC 

parameters [1,22]. This means integration of ILC 

with DQL involves the dynamic adjustment of ILC 

parameters based on the policy learned by the DQL 

agent, a concept echoed in the adaptive strategies. 

B. Learning Algorithms 

The DQL agent incorporates the Q-learning 

algorithm, with each element selected based on its 

proven effectiveness in the literature. It updates the 

policy based on a reward mechanism, guiding the 

DQL agent to improve the ILC performance 

iteratively. To stabilize learning and improve 

efficiency, the system uses an experience replay 

mechanism, storing and reusing past experiences, a 

strategy supported by findings in deep learning 

research [4]. The target network is used to provide 

more stable learning targets during the Q-value 

update step, a technique commonly used in deep 

Q-learning implementations as shown in Algorithm 

1 [6]. 

Algorithm 1: ILC+DQL Integration 

1: Initialize ILC parameters 

2: Initialize DQL agent (neural network, 

replay memory, etc.) 

 

for each iteration i do 

    3: Execute control task using current 

ILC parameters 

    4: Observe trajectory and calculate 

error 

    5: Store (state, action, reward, 

next_state) in DQL agent's memory 

    6: Update ILC parameters  

    if learning_condition then 

        7: Sample a minibatch from DQL 

agent's memory 

        8: Calculate target Q-value for 

each minibatch sample 

        9: Update DQL agent (train NN) 

        10: Update ILC parameters using 

policy derived from DQL agent 

 

    if convergence_criterion_met then 

        11: break 

    end if 

end for 

The performance of the system is assessed using 

the following metrics reflecting the critical aspects 

of control system performance. Firstly, the 

reduction in cumulative error over iterations is a 

direct measure of performance improvement, 

crucial in ILC [11-13]. Secondly, the system's 

ability to adapt to changing conditions is evaluated, 

highlighting the adaptive nature of DQL in 



 

1035 
 

response to dynamic environments [7,9]. Lastly, 

the number of iterations required to reach a 

predefined performance level is recorded, with 

faster convergence indicating a more efficient 

system, as discussed in the context of DRL [15].  

III. RESULTS 

The experimental evaluation of the ILC+DQL 

system was structured to assess its performance in 

terms of error reduction, adaptability, and 

convergence speed.  

A. Error Reduction 

Error reduction is a pivotal measure of 

performance for any control system. In the context 

of the ILC+DQL system demonstrated a 

remarkable reduction in error, outperforming 

traditional ILC systems significantly. The 

integration of DQL allowed for adaptive tuning of 

the ILC parameters, leading to more effective error 

minimization. [1] 

 
Figure 1: Time-based trajectory and error comparison 

 

 
Figure 2: Performance based trajectory and error comparison 

 

When subjected to dynamic environmental 

conditions, the ILC+DQL system adapted 

effectively and maintained a lower cumulative 

error compared to traditional ILC, echoing the 

adaptability of Q-learning in dynamic settings [3]. 

Adaptability to changes is crucial for any 

learning-based control. Therefore, the ILC+DQL 

system exhibited significant adaptability when key 

system parameters varied. Its ability to recalibrate 

and maintain performance under changing 

conditions is in line with [7] who emphasized the 

adaptive capabilities of DRL in congested spectral 

environments as performances evaluated in Figures 

1 and 2. 

B. Convergence Speed 

Convergence speed is indicative of the efficiency 

and practicality of the control system The 

ILC+DQL system generally achieved desired 

performance levels in fewer iterations compared to 

traditional ILC, a testament to the benefits of 

integrating DQL for optimizing learning rates and 

parameters [9] as shown in Figure 3. 
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Figure 3: Trajectory comparison with iteration 

 

Figure 4 shows that consistently faster convergence 

across various tasks underscores the system's 

robustness and effectiveness, paralleling 

advancements in DRL for control systems [15]. 

 
Figure 4: Error comparison over iterations 

The results section provided a comprehensive 

analysis of the performance of the ILC+DQL 

system, substantiated by relevant literature. Next 

these results will be discussed. 

 

IV. DISCUSSION 

The ILC+DQL system demonstrated enhanced 

performance across various metrics, underlining 

the benefits of integrating DRL with traditional 

ILC methods. The system's ability to adapt and 

converge quickly, even in dynamic environments, 

showcases the potential of this approach in 

addressing the inherent limitations of traditional 

ILC systems. These results are consistent with the 

current trends in control system research, where the 

integration of machine learning techniques is 

increasingly seen as a pathway to more adaptive 

and efficient systems [1,5]. 

The integration of DQL with ILC was 

hypothesized to provide a more robust and 

adaptive approach to controlling systems in 

varying and uncertain environments. The 

experimental results substantiate this hypothesis, 

demonstrating enhanced error reduction, 

adaptability, and convergence speed compared to 

traditional ILC approaches. 

The adaptability and resilience of the system 

were particularly notable, aligning with the 

dynamic nature of real-world applications. These 

improvements are largely attributed to the adaptive 

learning capabilities of the DQL agent, which 

continuously tuned the ILC parameters for optimal 

performance. 

The effectiveness of the ILC+DQL system 

resonates with the current literature in control 

systems and machine learning. Studies [7,23-25] 

have highlighted the potential of DRL in enhancing 

control strategies, which was evident in the 

performance of the ILC+DQL system. Similarly, 

the importance of adaptability and precision in 

control systems [11-14], was effectively addressed 

by the proposed system.  

Despite promising results, the implementation of 

ILC+DQL systems faces certain challenges. One of 

them is the addition of the DQL component 

introduces computational complexity, which might 

be a limiting factor in resource-constrained 

environments, as noted by various studies 

including those [7-9].  

Another limitation is the tuning the 

hyperparameters of the DQL agent is crucial for 

optimal performance and remains a challenging 

and time-consuming task, a common theme in deep 

learning applications [18-19]. 

 

V. CONCLUSION 

The integration of Deep Q-Learning with 

Iterative Learning Control represents a significant 

advancement in the field of intelligent control 

systems. The ILC+DQL system has demonstrated 

potential in addressing the complexities and 

dynamics of modern control tasks, offering a 

promising direction for future research and 

application. Continued exploration and refinement 

of this integrated approach are expected to yield 

further improvements and innovations in adaptive 

and intelligent control systems. 

While the results are promising, several avenues 

for future work have been identified: 

1. Further refinement of the DQL algorithm, 

including network architecture and learning 

parameters, could enhance the system's efficiency 
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and performance. Exploring other forms of 

reinforcement learning could also provide 

comparative insights and potential improvements. 

2. Applying the ILC+DQL system to real-world 

scenarios, such as robotics, manufacturing, or 

autonomous vehicles, would provide valuable 

insights into its practicality and scalability. This 

would also help in understanding the system's 

performance in real-time applications with more 

complex dynamics and constraints. 

3. The increased computational demand of the 

ILC+DQL system is a significant consideration. 

Future work could focus on optimizing the 

computational efficiency of the system, possibly 

through more efficient algorithms or hardware 

acceleration techniques. 

4. Comparing the ILC+DQL system with other 

advanced control strategies would provide a 

broader understanding of its relative strengths and 

areas for improvement. This could involve 

benchmarking against other learning-based control 

methods or more traditional adaptive control 

strategies. 
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