

All Sciences Proceedings
http://as-proceeding.com/

2nd International Conference on

Contemporary Academic Research

November 4-5, 2023 : Konya, Turkey

https://as-

proceeding.com/index.php/iccar
© 2023 Published by All Sciences Proceedings

427

Population-Based Vortex Search Optimization Algorithm for Solving Bin

Packing Problem

Tahir SAĞ

Department of Computer Engineering, Selçuk University, Türkiye

tahirsag@selcuk.edu.tr

Abstract— The Population-based Vortex Search Optimization Algorithm abbreviated as PVS is applied to

the bin packing problem in this study. PVS is a recently developed metaheuristic converting the original

vortex search algorithm inspired by the rotational motion of liquids from a single solution-based to a

population-based optimizer. Metaheuristics that rely on a single solution focus on exploring the vicinity of

that individual solution, whereas population-based metaheuristics carry out their search by generating

multiple candidate solutions at various locations within the search space. In this context, PVS is a

remarkably successful algorithm that combines the advantages of two types of techniques. Here, PVS is

tested by running on the bin packing problem which is a classic optimization challenge with broad industrial

relevance, involving the efficient allocation of items of varying sizes into a limited number of containers to

minimize wasted space. Moreover, the findings of PVS are compared with the firefly algorithm, and

invasive weed optimization algorithm. Experimental results prove that PVS is a successful tool with the

potential to solve industrial optimization problems.

Keywords — PVS, Bin Packing Problem, Metaheuristic Optimization.

I. INTRODUCTION

Many real-world optimization problems fall under

the category of NP-hard problems, making them

challenging to solve efficiently. Due to the

impracticality of exact algorithms, researchers

prioritize metaheuristic algorithms for tackling

complex computational tasks. Metaheuristics, often

inspired by nature and biological systems,

efficiently guide the search for global optima. They

achieve this by iteratively updating candidate

solution positions, originally randomly generated in

the search space, based on information from

previous iterations. Thus, minimizing the reliance

on the initial starting point enhances the algorithm’s

robustness. Metaheuristics can be categorized into

two groups: single-solution-based algorithms,

exemplified by Simulated Annealing, focus on local

search, and operate more exploitatively but risk

getting stuck at local optima. Population-based

algorithms, like Genetic Algorithms and Particle

Swarm Optimization, maintain multiple solutions

across different search space locations, promoting

better exploration and diversity preservation.

Population-based techniques are more prevalent in

the literature than single-solution-based ones,

primarily due to their superior exploration

capabilities, reducing the likelihood of local optima

traps [1].

This study focuses on a population-based version

of the Vortex Search (VS) algorithm [2] called PVS,

which was proposed by the author of this study in

2022 to improve the discovery ability of the single-

solution-based VS algorithm without disrupting its

original working structure. The PVS algorithm

comprises two primary phases, with an equal

division of the vortex size allocated to each phase.

http://as-proceeding.com/
https://as-proceeding.com/index.php/iccar
https://as-proceeding.com/index.php/iccar

428

During the initial phase, candidate solutions are

generated randomly by incorporating the calculated

radius value and applying a Gaussian distribution

centered around the focal point, mirroring the

methodology of the original VS algorithm. In the

subsequent phase, the location update mechanism,

which incorporates the probabilistic selection

technique from the ABC algorithm, is integrated

into the VS algorithm, thereby generating the

second half of the population. Furthermore, to

enhance the disturbance within the population, the

polynomial mutation operator is employed.

The Bin Packing Problem is a well-known

combinatorial optimization challenge in the field of

computer science. It belongs to the class of NP-hard

problems, indicating that it is computationally

difficult to find optimal solutions in polynomial

time for large instances. The fundamental objective

of the Bin Packing Problem is to efficiently pack a

set of items of varying sizes into a minimum number

of identical or capacity-constrained bins with the

goal of minimizing wasted space. Each item has a

specific size, and the bins have a fixed capacity. The

challenge lies in determining how to assign items to

bins in such a way that the number of bins used is

minimized.

In the context of this research, we have applied the

population-based Vortex Search algorithm to

address the Bin Packing Problem. To assess its

performance, we conducted experiments employing

the Firefly Algorithm (FA) [3] and the Invasive

Weed Optimization Algorithm (IWO) [4]. The

outcomes of our investigations demonstrate that

PVS exhibits significant promise as a highly

effective and alternative tool in comparison to other

established metaheuristic algorithms.

The rest of this paper is organized as follows.

Population-Based Vortex Search Optimization

Algorithm is briefly explained in section 2. The Bin

Packing Problem is introduced in section 3.

Experimental results of the PVS and compared

algorithms are given in section 4. Finally,

concluding remarks and possible future works are

provided in section 5.

II. POPULATION-BASED VORTEX SEARCH

OPTIMIZATION ALGORITHM

The Vortex Search algorithm is a single-solution-

based metaheuristic, which is firstly introduced in

2015 [2]. VS is derived to solve numeric

optimization problems from the vortex pattern

formed by the swirling motion of stirred fluids.

Algorithms based on a single solution, like VS,

work quickly, but this feature can cause the search

process to get stuck in a local optimum. Population-

Based Vortex Search Optimization Algorithm

(PVS) was proposed to introduce a population-

based structure into the VS algorithm with the

position update operator and polynomial mutation

operator, while preserving the original working

strategy of VS [5]. For this purpose, the candidate

solutions (CS) are divided into two equal parts to be

developed in two phases.

PVS starts by setting control parameters:

population size (psize), vortex size (vsize=psize/2),

termination condition, and probability of mutation

(η_m). The parameters μ_0 and r_0 are also

calculated in the same way as in VS. Then, CS

(psize) is initially randomly generated in the first

iteration, with only half (vsize) generated in

subsequent iterations. The generation process,

utilizing a Gaussian distribution as in the original

VS, divides the population into two halves. One half

is replicated through a best-center-oriented

exploitation process, while the other undergoes an

update via a population-based approach with

selection pressure in mind. After this step, the

central point is updated by replacing it with the best-

found solution. After that, candidate solutions are

matched using the proportional selection method.

The selection probability (prob) for each candidate

solution is calculated by Eq (1). Thus, each solution

in the second half of the CS (from vsize+1 to psize)

is updated with a solution determined by taking the

prob values into account.

𝑝𝑟𝑜𝑏𝑖 = 𝑐𝑠𝑢𝑚𝑖 𝑐𝑠𝑢𝑚𝑝𝑠𝑖𝑧𝑒⁄

𝑐𝑠𝑢𝑚𝑖 = ∑ 𝑛𝑜𝑟𝑚𝑝𝑖

𝑖

𝑗=1

𝑛𝑜𝑟𝑚𝑝𝑖 = 𝑝𝑖 ∑ 𝑝𝑖

𝑝𝑠𝑖𝑧𝑒

𝑖=1

⁄

𝑝𝑖 = 0.9 × (𝑚𝑎𝑥{𝑓} −𝑓𝑖) + 0.1

(1)

where 𝑝𝑖 corresponds to the rescaled fitness value of

the i-th solution, where the objective function values

have been converted from minimization to

maximization. 𝑓𝑖 represents the fitness value

429

associated with the i-th solution, while 𝑚𝑎𝑥{𝑓}

signifies the highest fitness value within the current

population. 𝑛𝑜𝑟𝑚𝑝 denotes the vector of

probability values derived from normalizing the 𝑝

values, ensuring they fall within the [0,1] range. On

the other hand, 𝑐𝑠𝑢𝑚 is the cumulative sum vector

comprised of the normalized 𝑛𝑜𝑟𝑚𝑝 values.

Within the latter half of the population, denoted

as 𝑖 = {𝑣𝑠𝑖𝑧𝑒 + 1, 𝑣𝑠𝑖𝑧𝑒 + 2, … , 𝑝𝑠𝑖𝑧𝑒}, a random

neighboring solution is selected for each solution

𝐶𝑆𝑖, using the probability vector derived from the

entire population. A fresh solution, denoted as

𝐶𝑆𝑛𝑒𝑤 , is created by modifying the value of a

randomly selected dimension according to Eq (2).

Then, values exceeding the limit on the obtained

dimension value are pushed to the limit values.

𝐶𝑆𝑛𝑒𝑤 = 𝐶𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝑡ℎ𝑒𝑛

𝐶𝑆𝑛𝑒𝑤
𝑖 = 𝐶𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝑖

+ (𝐶𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡
𝑖 − 𝐶𝑆𝑛𝑒𝑖𝑔𝑏𝑜𝑢𝑟

𝑖)

× (𝑟 − 0.5) × 2

(2)

where r represents a random number within the

range of [0,1]. The fitness value of 𝐶𝑆𝑛𝑒𝑤 is

calculated and then compared with the current

solution 𝐶𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 . If 𝐶𝑆𝑛𝑒𝑤 outperforms

𝐶𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 , it supersedes the latter as the new

solution. In cases where 𝐶𝑆𝑛𝑒𝑤 doesn't surpass

𝐶𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡, we generate a mutant solution, 𝐶𝑆𝑚𝑢𝑡𝑎𝑛𝑡

using the polynomial mutation method as described

in Eq (3) referenced in [6].

𝐶𝑆𝑚𝑢𝑡𝑎𝑛𝑡 = 𝐶𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡

+ 𝛿𝑞 × (𝑢𝑝𝑝𝑒𝑟 − 𝑙𝑜𝑤𝑒𝑟)

(3)

𝛿𝑞

= {
[2𝑟 + (1 − 2𝑟)(1 − 𝛿1)𝜂m+1]

1
𝜂m+1 − 1, 𝑖𝑓 𝑟 ≤ 0.5

1 − [2(1 − 𝑟) + 2(𝑟 − 0.5)(1 − 𝛿2)𝜂m+1]
1

𝜂m+1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝛿1 =
𝐶𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑙𝑜𝑤𝑒𝑟

𝑢𝑝𝑝𝑒𝑟 − 𝑙𝑜𝑤𝑒𝑟

𝛿2 =
𝑢𝑝𝑝𝑒𝑟 − 𝐶𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝑢𝑝𝑝𝑒𝑟 − 𝑙𝑜𝑤𝑒𝑟

Polynomial mutation provides a perturbation

effect by distorting a solution. Subsequently, a

selection process is carried out in a greedy manner

between 𝐶𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 and 𝐶𝑆𝑚𝑢𝑡𝑎𝑛𝑡. Upon completing

this step, the center point (μ) is updated by replacing

it with the newly discovered best solution. After the

completion of one generation, the size of the radius

to be utilized in the subsequent generation is

reduced. This ensures that in the first phase, a

number of solutions within the reduced radius,

denoted as 𝑣𝑠𝑖𝑧𝑒 , are reproduced. In the second

phase, stochastic information continues to be

utilized with the solutions constituting the second

half of the population. The PVS algorithm remains

operational until it reaches the maximum number of

function evaluations. For a more detailed

description of the algorithm, readers can refer to the

original article referenced in [5].

III. BIN PACKING PROBLEM

The Bin Packing Problem (BPP) is a classic

optimization problem in computer science and

mathematics. BPP is encountered as a classical

computational challenge. In its most canonical

formulation, a collection of bins, each endowed with

finite capacity, and a set of items characterized by

known weights, are presented as the input. The

primary objective inherent in the BPP is the

allocation of these items to the bins, sans division,

in a manner such that the summation of item weights

within any given bin does not surpass the bin's

specified capacity, all while striving to employ the

minimum number of bins attainable. The BPP, due

to its NP-hard nature, signifies a computationally

intricate conundrum, denoting that the quest for an

optimal solution to this problem entails a formidable

computational burden, particularly when confronted

with sizable instances. Numerous heuristic methods

and approximation algorithms have been devised to

expedite the derivation of satisfactory solutions,

though they may not guarantee optimality [7-9]. The

430

fundamental one-dimensional BBP is

mathematically defined by Eq (4), Eq (5), and Eq

(6).

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 ∑ 𝑦𝑏

𝑏∈𝐵𝑖𝑛𝑠

(4)

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝑥𝑝𝑏 = 1

𝑏∈𝐵𝑖𝑛𝑠

 (5)

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 ∑ 𝑠𝑖𝑧𝑒𝑝𝑥𝑝𝑏 ≤ 𝑐𝑎𝑝𝑏

𝑝 ∈ 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑠

𝑦𝑏 ∈ {0,1} ⋀ 𝑥𝑝𝑏 ∈ {0,1}, 𝑝 ∈ 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑠, 𝑏 ∈ 𝐵𝑖𝑛𝑠

(6)

where 𝑠𝑖𝑧𝑒𝑝 represents the size of the pth

elements in the Products set, and Bins = {1, ..., NP}

denotes the set of candidate bins based on each one

having a capacity shown as 𝑐𝑎𝑝𝑏 . The constraint

defined in Eq (2) guarantees that each product is

assigned to exactly one bin. 𝑦𝑏 and 𝑥𝑝𝑏 are control

variables that can only take values of 0 and 1.

𝑖𝑓 𝑥𝑝𝑏 = 1, it means that product p is assigned to

bin b. Similarly, if 𝑦𝑏 = 1, it indicates that box b is

used.

IV. EXPERIMENTAL RESULTS

In this study, the PVS algorithm was tailored to

address the bin packing problem, and the

algorithm’s outcomes in solving this problem were

juxtaposed with those of two established algorithms

from the literature: the Firefly Algorithm (FA) and

the Invasive Weed Optimization Algorithm (IWO).

The bin packing problem instance employed in this

study was sourced from the website

www.yarpiz.com [10]. Additionally, the source

code of the PVS algorithm can be accessed from the

website www.mathworks.com [11].

This specific problem entails the task of

determining the optimal allocation of 30 differently

sized products into containers, each with a

maximum capacity of 30, with the objective of

minimizing the overall cost. The cost function used

in the solutions incorporates penalty terms for

instances where the container capacity is exceeded.

All algorithms were executed under uniform

conditions on a computer equipped with an Intel(R)

Core(TM) i5-4210U CPU@1.70GHz 2.40GHz

processor and 8 GB of RAM. Each algorithm

underwent ten repetitions with a maximum limit of

1000 function evaluations (MaxFEs). Subsequently,

the mean elapsed times and the mean values, along

with their respective standard deviations, were

computed based on the obtained results. The results

are presented in Table 1. Figure 1, Figure 2, and

Figure 3 respectively depict a visual representation

of one of the best results obtained by the PVS, FA,

and IWO algorithms over 10 runs for the bin

packing problem.

Table-1. The statical results of the algorithms.

PVS FA IWO

best 7 7 7

worst 8 8 8.7500

mean 7.3571 7.3000 7.9393

std 0.4774 0.4830 0.5448

mean elapsed time 2.5030 17.007 5.5469

Fig. 1. Placement of the bins for the solution found by PVS

Fig. 2. Placement of the bins for the solution found by FA

http://www.yarpiz.com/
http://www.mathworks.com/

431

Fig. 3. Placement of the bins for the solution found by IWO

As illustrated in the figures, all algorithms

converged to a cost value of 7 after 2000 MaxFEs in

their respective solutions. This consistency is

further corroborated by the concurrence of these

best values in Table-1. The notable divergence

among the algorithmic solutions emerges in the

arrangement of products within the bins.

Specifically, in 6 out of 10 runs, PVS achieved the

optimal result, whereas FA and IWO achieved the

same outcome in 7 and 2 runs, respectively. In terms

of computational efficiency, PVS exhibits a

significantly shorter runtime compared to the other

two metaheuristic algorithms. On average, PVS

completed its computations in a mere 2.5 seconds,

whereas FA required 17 seconds, and IWO

completed the process in 5.5 seconds. This situation,

while arising as a manifestation of PVS's fast single-

solution-based working characteristic, also enables

it to achieve the same best values as other

metaheuristics due to its advanced exploration

ability when operating in a population-based

manner.

V. CONCLUSIONS

This study has introduced and applied the

Population-Based Vortex Search Optimization

Algorithm to the challenging Bin Packing Problem.

BPP is a classic NP-hard optimization problem with

significant industrial relevance, involving the

efficient allocation of items into bins to minimize

wasted space. PVS, a population-based

metaheuristic algorithm, has been demonstrated to

be a promising tool for solving this problem

efficiently. The experimental results presented in

this study have shown that PVS performs

competitively with established metaheuristic

algorithms such as the Firefly Algorithm and the

Invasive Weed Optimization Algorithm. PVS

achieved optimal solutions in a majority of runs,

showcasing its effectiveness in tackling BPP.

Moreover, PVS exhibited superior computational

efficiency, completing its computations in

significantly less time compared to FA and IWO.

The findings of this research highlight the

potential of PVS as an alternative and efficient tool

for solving industrial optimization problems like the

BPP. As future work, further investigations can

explore the application of PVS to other

combinatorial optimization challenges and the fine-

tuning of its parameters to enhance its performance

in various domains. In summary, the Population-

Based Vortex Search Optimization Algorithm, as

presented in this study, offers a promising approach

to addressing complex optimization problems and

contributes to the growing body of research in the

field of metaheuristic algorithms.

REFERENCES

[1] X.-S. Yang, Engineering optimization: an introduction

with metaheuristic applications. John Wiley & Sons,

2010.

[2] B. Doğan and T. Ölmez, "A new metaheuristic for

numerical function optimization: Vortex Search

algorithm," Information Sciences, vol. 293, pp. 125-145,

2015/02/01/ 2015, doi:

https://doi.org/10.1016/j.ins.2014.08.053.

[3] X.-S. Yang, Nature-inspired metaheuristic algorithms.

Luniver press, 2010.

[4] A. R. Mehrabian and C. Lucas, "A novel numerical

optimization algorithm inspired from weed colonization,"

Ecological Informatics, vol. 1, no. 4, pp. 355-366,

2006/12/01/ 2006, doi:

https://doi.org/10.1016/j.ecoinf.2006.07.003.

[5] T. Sağ, "PVS: a new population-based vortex search

algorithm with boosted exploration capability using

polynomial mutation," Neural Computing and

Applications, vol. 34, no. 20, pp. 18211-18287,

2022/10/01 2022, doi: 10.1007/s00521-022-07671-x.

[6] K. Deb, Multi-objective optimization using evolutionary

algorithms. John Wiley & Sons, 2001.

[7] M. Casazza and A. Ceselli, "Mathematical programming

algorithms for bin packing problems with item

fragmentation," Computers & Operations Research, vol.

46, pp. 1-11, 2014/06/01/ 2014, doi:

https://doi.org/10.1016/j.cor.2013.12.008.

[8] B. Byholm and I. Porres, "Fast algorithms for

fragmentable items bin packing," Journal of Heuristics,

vol. 24, no. 5, pp. 697-723, 2018/10/01 2018, doi:

10.1007/s10732-018-9375-z.

[9] H. I. Christensen, A. Khan, S. Pokutta, and P. Tetali,

"Approximation and online algorithms for

https://doi.org/10.1016/j.ins.2014.08.053
https://doi.org/10.1016/j.ecoinf.2006.07.003
https://doi.org/10.1016/j.cor.2013.12.008

432

multidimensional bin packing: A survey," Computer

Science Review, vol. 24, pp. 63-79, 2017/05/01/ 2017, doi:

https://doi.org/10.1016/j.cosrev.2016.12.001.

[10] M. K. Heris. "Bin Packing Problem using GA, PSO, FA,

and IWO." Yarpiz. https://yarpiz.com/363/ypap105-bin-

packing-problem (accessed September 18, 2023.

[11] T. Sag. "The MATLAB Source Code of Population-based

Vortex Search Algorithm (PVS)."

https://www.mathworks.com/matlabcentral/fileexchange/

127938-pvs-population-based-vortex-search-

algorithm?s_tid=srchtitle_site_search_1_pvs (accessed

September 18, 2023.

https://doi.org/10.1016/j.cosrev.2016.12.001
https://yarpiz.com/363/ypap105-bin-packing-problem
https://yarpiz.com/363/ypap105-bin-packing-problem
https://www.mathworks.com/matlabcentral/fileexchange/127938-pvs-population-based-vortex-search-algorithm?s_tid=srchtitle_site_search_1_pvs
https://www.mathworks.com/matlabcentral/fileexchange/127938-pvs-population-based-vortex-search-algorithm?s_tid=srchtitle_site_search_1_pvs
https://www.mathworks.com/matlabcentral/fileexchange/127938-pvs-population-based-vortex-search-algorithm?s_tid=srchtitle_site_search_1_pvs

