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Abstract— The Population-based Vortex Search Optimization Algorithm abbreviated as PVS is applied to 

the bin packing problem in this study. PVS is a recently developed metaheuristic converting the original 

vortex search algorithm inspired by the rotational motion of liquids from a single solution-based to a 

population-based optimizer. Metaheuristics that rely on a single solution focus on exploring the vicinity of 

that individual solution, whereas population-based metaheuristics carry out their search by generating 

multiple candidate solutions at various locations within the search space. In this context, PVS is a 

remarkably successful algorithm that combines the advantages of two types of techniques. Here, PVS is 

tested by running on the bin packing problem which is a classic optimization challenge with broad industrial 

relevance, involving the efficient allocation of items of varying sizes into a limited number of containers to 

minimize wasted space. Moreover, the findings of PVS are compared with the firefly algorithm, and 

invasive weed optimization algorithm. Experimental results prove that PVS is a successful tool with the 

potential to solve industrial optimization problems. 
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I. INTRODUCTION 

Many real-world optimization problems fall under 

the category of NP-hard problems, making them 

challenging to solve efficiently. Due to the 

impracticality of exact algorithms, researchers 

prioritize metaheuristic algorithms for tackling 

complex computational tasks. Metaheuristics, often 

inspired by nature and biological systems, 

efficiently guide the search for global optima. They 

achieve this by iteratively updating candidate 

solution positions, originally randomly generated in 

the search space, based on information from 

previous iterations. Thus, minimizing the reliance 

on the initial starting point enhances the algorithm’s 

robustness. Metaheuristics can be categorized into 

two groups: single-solution-based algorithms, 

exemplified by Simulated Annealing, focus on local 

search, and operate more exploitatively but risk 

 
 

getting stuck at local optima. Population-based 

algorithms, like Genetic Algorithms and Particle 

Swarm Optimization, maintain multiple solutions 

across different search space locations, promoting 

better exploration and diversity preservation. 

Population-based techniques are more prevalent in 

the literature than single-solution-based ones, 

primarily due to their superior exploration 

capabilities, reducing the likelihood of local optima 

traps [1]. 

This study focuses on a population-based version 

of the Vortex Search (VS) algorithm [2] called PVS, 

which was proposed by the author of this study in 

2022 to improve the discovery ability of the single-

solution-based VS algorithm without disrupting its 

original working structure. The PVS algorithm 

comprises two primary phases, with an equal 

division of the vortex size allocated to each phase. 
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During the initial phase, candidate solutions are 

generated randomly by incorporating the calculated 

radius value and applying a Gaussian distribution 

centered around the focal point, mirroring the 

methodology of the original VS algorithm. In the 

subsequent phase, the location update mechanism, 

which incorporates the probabilistic selection 

technique from the ABC algorithm, is integrated 

into the VS algorithm, thereby generating the 

second half of the population. Furthermore, to 

enhance the disturbance within the population, the 

polynomial mutation operator is employed. 

The Bin Packing Problem is a well-known 

combinatorial optimization challenge in the field of 

computer science. It belongs to the class of NP-hard 

problems, indicating that it is computationally 

difficult to find optimal solutions in polynomial 

time for large instances. The fundamental objective 

of the Bin Packing Problem is to efficiently pack a 

set of items of varying sizes into a minimum number 

of identical or capacity-constrained bins with the 

goal of minimizing wasted space. Each item has a 

specific size, and the bins have a fixed capacity. The 

challenge lies in determining how to assign items to 

bins in such a way that the number of bins used is 

minimized. 

In the context of this research, we have applied the 

population-based Vortex Search algorithm to 

address the Bin Packing Problem. To assess its 

performance, we conducted experiments employing 

the Firefly Algorithm (FA) [3] and the Invasive 

Weed Optimization Algorithm (IWO) [4]. The 

outcomes of our investigations demonstrate that 

PVS exhibits significant promise as a highly 

effective and alternative tool in comparison to other 

established metaheuristic algorithms. 

The rest of this paper is organized as follows. 

Population-Based Vortex Search Optimization 

Algorithm is briefly explained in section 2. The Bin 

Packing Problem is introduced in section 3. 

Experimental results of the PVS and compared 

algorithms are given in section 4.  Finally, 

concluding remarks and possible future works are 

provided in section 5. 

II. POPULATION-BASED VORTEX SEARCH 

OPTIMIZATION ALGORITHM 

The Vortex Search algorithm is a single-solution-

based metaheuristic, which is firstly introduced in 

2015  [2]. VS is derived to solve numeric 

optimization problems from the vortex pattern 

formed by the swirling motion of stirred fluids. 

Algorithms based on a single solution, like VS, 

work quickly, but this feature can cause the search 

process to get stuck in a local optimum. Population-

Based Vortex Search Optimization Algorithm 

(PVS) was proposed to introduce a population-

based structure into the VS algorithm with the 

position update operator and polynomial mutation 

operator, while preserving the original working 

strategy of VS [5]. For this purpose, the candidate 

solutions (CS) are divided into two equal parts to be 

developed in two phases. 

PVS starts by setting control parameters: 

population size (psize), vortex size (vsize=psize/2), 

termination condition, and probability of mutation 

(η_m). The parameters μ_0  and r_0 are also 

calculated in the same way as in VS. Then, CS 

(psize) is initially randomly generated in the first 

iteration, with only half (vsize) generated in 

subsequent iterations. The generation process, 

utilizing a Gaussian distribution as in the original 

VS, divides the population into two halves. One half 

is replicated through a best-center-oriented 

exploitation process, while the other undergoes an 

update via a population-based approach with 

selection pressure in mind. After this step, the 

central point is updated by replacing it with the best-

found solution. After that, candidate solutions are 

matched using the proportional selection method. 

The selection probability (prob) for each candidate 

solution is calculated by Eq (1). Thus, each solution 

in the second half of the CS (from vsize+1 to psize) 

is updated with a solution determined by taking the 

prob values into account. 

𝑝𝑟𝑜𝑏𝑖 = 𝑐𝑠𝑢𝑚𝑖 𝑐𝑠𝑢𝑚𝑝𝑠𝑖𝑧𝑒⁄  

𝑐𝑠𝑢𝑚𝑖 = ∑ 𝑛𝑜𝑟𝑚𝑝𝑖

𝑖

𝑗=1

 

𝑛𝑜𝑟𝑚𝑝𝑖 = 𝑝𝑖 ∑ 𝑝𝑖

𝑝𝑠𝑖𝑧𝑒

𝑖=1

⁄  

𝑝𝑖 = 0.9 × (𝑚𝑎𝑥{𝑓} −𝑓𝑖) + 0.1 

(1) 

where 𝑝𝑖 corresponds to the rescaled fitness value of 

the i-th solution, where the objective function values 

have been converted from minimization to 

maximization. 𝑓𝑖  represents the fitness value 
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associated with the i-th solution, while 𝑚𝑎𝑥{𝑓} 

signifies the highest fitness value within the current 

population. 𝑛𝑜𝑟𝑚𝑝  denotes the vector of 

probability values derived from normalizing the 𝑝 

values, ensuring they fall within the [0,1] range. On 

the other hand, 𝑐𝑠𝑢𝑚 is the cumulative sum vector 

comprised of the normalized 𝑛𝑜𝑟𝑚𝑝 values. 

Within the latter half of the population, denoted 

as 𝑖 =  {𝑣𝑠𝑖𝑧𝑒 + 1, 𝑣𝑠𝑖𝑧𝑒 + 2, … , 𝑝𝑠𝑖𝑧𝑒}, a random 

neighboring solution is selected for each solution 

𝐶𝑆𝑖, using the probability vector derived from the 

entire population. A fresh solution, denoted as 

𝐶𝑆𝑛𝑒𝑤 , is created by modifying the value of a 

randomly selected dimension according to Eq (2). 

Then, values exceeding the limit on the obtained 

dimension value are pushed to the limit values. 

 

𝐶𝑆𝑛𝑒𝑤 = 𝐶𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 

𝑡ℎ𝑒𝑛 

𝐶𝑆𝑛𝑒𝑤
𝑖 = 𝐶𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝑖

+ (𝐶𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡
𝑖 − 𝐶𝑆𝑛𝑒𝑖𝑔𝑏𝑜𝑢𝑟

𝑖 )

× (𝑟 − 0.5) × 2 

(2) 

where r represents a random number within the 

range of [0,1]. The fitness value of  𝐶𝑆𝑛𝑒𝑤  is 

calculated and then compared with the current 

solution 𝐶𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 . If 𝐶𝑆𝑛𝑒𝑤  outperforms 

𝐶𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 , it supersedes the latter as the new 

solution. In cases where 𝐶𝑆𝑛𝑒𝑤  doesn't surpass 

𝐶𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡, we generate a mutant solution, 𝐶𝑆𝑚𝑢𝑡𝑎𝑛𝑡 

using the polynomial mutation method as described 

in Eq (3) referenced in [6].  

𝐶𝑆𝑚𝑢𝑡𝑎𝑛𝑡 = 𝐶𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡

+ 𝛿𝑞 × (𝑢𝑝𝑝𝑒𝑟 − 𝑙𝑜𝑤𝑒𝑟) 

(3) 

𝛿𝑞

= {
[2𝑟 + (1 − 2𝑟)(1 − 𝛿1)𝜂m+1]

1
𝜂m+1 − 1, 𝑖𝑓 𝑟 ≤ 0.5

1 − [2(1 − 𝑟) + 2(𝑟 − 0.5)(1 − 𝛿2)𝜂m+1]
1

𝜂m+1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝛿1 =
𝐶𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑙𝑜𝑤𝑒𝑟

𝑢𝑝𝑝𝑒𝑟 − 𝑙𝑜𝑤𝑒𝑟
 

𝛿2 =
𝑢𝑝𝑝𝑒𝑟 − 𝐶𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝑢𝑝𝑝𝑒𝑟 − 𝑙𝑜𝑤𝑒𝑟
 

Polynomial mutation provides a perturbation 

effect by distorting a solution. Subsequently, a 

selection process is carried out in a greedy manner 

between 𝐶𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 and 𝐶𝑆𝑚𝑢𝑡𝑎𝑛𝑡. Upon completing 

this step, the center point (μ) is updated by replacing 

it with the newly discovered best solution. After the 

completion of one generation, the size of the radius 

to be utilized in the subsequent generation is 

reduced. This ensures that in the first phase, a 

number of solutions within the reduced radius, 

denoted as 𝑣𝑠𝑖𝑧𝑒 , are reproduced. In the second 

phase, stochastic information continues to be 

utilized with the solutions constituting the second 

half of the population. The PVS algorithm remains 

operational until it reaches the maximum number of 

function evaluations. For a more detailed 

description of the algorithm, readers can refer to the 

original article referenced in [5]. 

III. BIN PACKING PROBLEM 

The Bin Packing Problem (BPP) is a classic 

optimization problem in computer science and 

mathematics. BPP is encountered as a classical 

computational challenge. In its most canonical 

formulation, a collection of bins, each endowed with 

finite capacity, and a set of items characterized by 

known weights, are presented as the input. The 

primary objective inherent in the BPP is the 

allocation of these items to the bins, sans division, 

in a manner such that the summation of item weights 

within any given bin does not surpass the bin's 

specified capacity, all while striving to employ the 

minimum number of bins attainable. The BPP, due 

to its NP-hard nature, signifies a computationally 

intricate conundrum, denoting that the quest for an 

optimal solution to this problem entails a formidable 

computational burden, particularly when confronted 

with sizable instances. Numerous heuristic methods 

and approximation algorithms have been devised to 

expedite the derivation of satisfactory solutions, 

though they may not guarantee optimality [7-9]. The 
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fundamental one-dimensional BBP is 

mathematically defined by Eq (4), Eq (5), and Eq 

(6). 

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 ∑ 𝑦𝑏

𝑏∈𝐵𝑖𝑛𝑠

 
(4) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝑥𝑝𝑏 = 1

𝑏∈𝐵𝑖𝑛𝑠

 (5) 

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 ∑ 𝑠𝑖𝑧𝑒𝑝𝑥𝑝𝑏 ≤ 𝑐𝑎𝑝𝑏

𝑝 ∈ 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑠

 

 

𝑦𝑏 ∈ {0,1} ⋀ 𝑥𝑝𝑏 ∈ {0,1}, 𝑝 ∈ 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑠, 𝑏 ∈ 𝐵𝑖𝑛𝑠 

(6) 

where 𝑠𝑖𝑧𝑒𝑝  represents the size of the pth 

elements in the Products set, and Bins = {1, ..., NP} 

denotes the set of candidate bins based on each one 

having a capacity shown as 𝑐𝑎𝑝𝑏 . The constraint 

defined in Eq (2) guarantees that each product is 

assigned to exactly one bin. 𝑦𝑏 and 𝑥𝑝𝑏 are control 

variables that can only take values of 0 and 1. 

𝑖𝑓 𝑥𝑝𝑏 = 1, it means that product p is assigned to 

bin b. Similarly, if 𝑦𝑏 = 1, it indicates that box b is 

used. 

IV. EXPERIMENTAL RESULTS 

In this study, the PVS algorithm was tailored to 

address the bin packing problem, and the 

algorithm’s outcomes in solving this problem were 

juxtaposed with those of two established algorithms 

from the literature: the Firefly Algorithm (FA) and 

the Invasive Weed Optimization Algorithm (IWO). 

The bin packing problem instance employed in this 

study was sourced from the website 

www.yarpiz.com [10]. Additionally, the source 

code of the PVS algorithm can be accessed from the 

website www.mathworks.com [11]. 

This specific problem entails the task of 

determining the optimal allocation of 30 differently 

sized products into containers, each with a 

maximum capacity of 30, with the objective of 

minimizing the overall cost. The cost function used 

in the solutions incorporates penalty terms for 

instances where the container capacity is exceeded. 

All algorithms were executed under uniform 

conditions on a computer equipped with an Intel(R) 

Core(TM) i5-4210U CPU@1.70GHz 2.40GHz 

processor and 8 GB of RAM. Each algorithm 

underwent ten repetitions with a maximum limit of 

1000 function evaluations (MaxFEs). Subsequently, 

the mean elapsed times and the mean values, along 

with their respective standard deviations, were 

computed based on the obtained results. The results 

are presented in Table 1. Figure 1, Figure 2, and 

Figure 3 respectively depict a visual representation 

of one of the best results obtained by the PVS, FA, 

and IWO algorithms over 10 runs for the bin 

packing problem. 

 

Table-1. The statical results of the algorithms. 

 

 
PVS FA IWO 

best 7 7 7 

worst 8 8 8.7500 

mean 7.3571 7.3000 7.9393 

std 0.4774 0.4830 0.5448 

mean elapsed time 2.5030 17.007 5.5469 

 

 

Fig. 1. Placement of the bins for the solution found by PVS 

 

 

Fig. 2. Placement of the bins for the solution found by FA 
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Fig. 3. Placement of the bins for the solution found by IWO 

As illustrated in the figures, all algorithms 

converged to a cost value of 7 after 2000 MaxFEs in 

their respective solutions. This consistency is 

further corroborated by the concurrence of these 

best values in Table-1. The notable divergence 

among the algorithmic solutions emerges in the 

arrangement of products within the bins. 

Specifically, in 6 out of 10 runs, PVS achieved the 

optimal result, whereas FA and IWO achieved the 

same outcome in 7 and 2 runs, respectively. In terms 

of computational efficiency, PVS exhibits a 

significantly shorter runtime compared to the other 

two metaheuristic algorithms. On average, PVS 

completed its computations in a mere 2.5 seconds, 

whereas FA required 17 seconds, and IWO 

completed the process in 5.5 seconds. This situation, 

while arising as a manifestation of PVS's fast single-

solution-based working characteristic, also enables 

it to achieve the same best values as other 

metaheuristics due to its advanced exploration 

ability when operating in a population-based 

manner. 
 

V. CONCLUSIONS  

This study has introduced and applied the 

Population-Based Vortex Search Optimization 

Algorithm to the challenging Bin Packing Problem. 

BPP is a classic NP-hard optimization problem with 

significant industrial relevance, involving the 

efficient allocation of items into bins to minimize 

wasted space. PVS, a population-based 

metaheuristic algorithm, has been demonstrated to 

be a promising tool for solving this problem 

efficiently. The experimental results presented in 

this study have shown that PVS performs 

competitively with established metaheuristic 

algorithms such as the Firefly Algorithm and the 

Invasive Weed Optimization Algorithm. PVS 

achieved optimal solutions in a majority of runs, 

showcasing its effectiveness in tackling BPP. 

Moreover, PVS exhibited superior computational 

efficiency, completing its computations in 

significantly less time compared to FA and IWO. 

The findings of this research highlight the 

potential of PVS as an alternative and efficient tool 

for solving industrial optimization problems like the 

BPP. As future work, further investigations can 

explore the application of PVS to other 

combinatorial optimization challenges and the fine-

tuning of its parameters to enhance its performance 

in various domains. In summary, the Population-

Based Vortex Search Optimization Algorithm, as 

presented in this study, offers a promising approach 

to addressing complex optimization problems and 

contributes to the growing body of research in the 

field of metaheuristic algorithms. 
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