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Abstract – This paper focuses on the Fractional Complex Order Plant (FCOP) plant model, which has recently 

acquired favor in applied physics and control systems. The consideration of the physical phenomena of complex 

plant models and how they impact the stability and durability of the systems is the main addition of this recommended 

research to the literature. Because the FCOP plant model is the most generic mathematical form, covering the Integer 

Order Plant (IOP) and Fractional Order Plant (FOP) models, other plant models may be readily developed with this 

benefit. The physical changes of the computational equations produced with the proposed approach and the suggested 

IOPID controller are seen for fractional complex order plants. The effects of the factors on the system are investigated 

alongside simulation values. For the plant type, the benefits and drawbacks of the chosen controller setup can also 

be discussed.   
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I. INTRODUCTION 

Control system design has a very important place 

in the industry. The controller modeled for real 

processes is required to be simple, most cost-

effective and meet all constraints. Controller 

parameters must be designed to meet these 

requirements and operate at various values. During 

the design process, the stability and durability of the 

system were among the most important goals to be 

achieved. In addition to stability and robustness, it 

would be useful to consider the widest frequency 

range in which the system can operate when 

designing the controller.  

The controllers will have a major task in ensuring 

that the complex and energy-intensive control 

systems in real industrial processes operate in a 

dependable and efficient manner [1]. Numerous 

contemporary industrial applications make use of 

proportional-integrative-derivative (PID) 

controllers [2]-[4]. The PID technique is widely 

used in process control in industry [5]. Sadly, long-

term memory effects—which are found in many 

other complex systems linked to processes with 

non-local dynamics—are absent from PID 

controllers. Fractional calculus can be used for 

higher-accuracy modeling, for example, for 

arbitrary-order integration and differentiation [6], 

[7]. A typical PID model used for control purposes 

is based on integer order calculus, and integer 

derivative operators do not have the non-locality 

property [8], [9]. Ziegler and Nichols designed one 

of the most well-known vehicle tuning methods 

[10]. It may be used to a wide range of study fields, 

such as neural networks, signal processing, thermal 

diffusion, chaotic systems, viscoelasticity, and 

mechatronic systems [11]-[17]. It is an essential 

instrument for providing a detailed description of 

real-world physical processes. For example, a 

hydraulic servo system with substantial mechanical 

inertia and historical dependency has been 

controlled using the fractional-order derivative [18]. 

Furthermore, fractional calculus has been heavily 

utilized in both system modeling and controller 

design investigations [19]-[22]. 

In order to produce analytical solutions and 

explore the underlying physical phenomena, this 

study makes use of the Fractional Complex Order 

Plant (FCOP) plant model and PID controller 
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structure, which are increasingly used in applied 

physics and control systems. We consider a 

complex system whose controller structure hasn't 

gotten much attention in the literature up to this 

time. Simulations and images are used to describe 

and provide support for the results of the solutions 

generated with varying parameter values for the 

system's stability and durability. When building a 

system, the effects of the real and imaginary 

components of the complex number are considered 

differently. 

For fractional order plants, the first study about the 

concept was built up in 2019 [23]. Then, with 

developments, the theory was further improved 

[24]-[26]. 

This paper is organized in the following way. The 

second section gives information about the closed 

loop and open loop system integration. The third 

section gives the design procedure of the FCOP. 

II. SYSTEM INTEGRATION 

The block diagram of the closed loop control 

system used in this study is shown in Fig. 1. 

 
Fig. 1. A closed loop control system 

The system's Laplace sign input is R(s), and its 

Laplace sign output is Y(s). The regulated system is 

indicated by P(s), and the controller that will control 

the system is indicated by C(s). G(s), the system's 

open loop transfer function, may be calculated as 

below. 

( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

Y s
R s P s C s Y s G s P s C s

R s
=  = =

 (1) 

The system's closed-loop transfer function, or T(s), 

may be obtained with the following equation. 

( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( )

( ) 1 ( ) ( ) 1 ( )

R s Y s P s C s Y s

Y s P s C s G s
T s

R s P s C s G s

− = 

= = =
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It is evident that there is a close relationship between 

the system's open-loop and closed-loop transfer 

functions [24], [25]. 

The combined amplitude and phase margin graphs 

of the system are displayed in the Bode diagram, a 

type of graph used in system analysis. It is quite 

helpful to have two system components in one 

picture at the same time. Bode diagrams are used in 

open loop systems analysis. The first part of the 

system is the amplitude margin, which indicates 

how much the gain of the open loop system may be 

raised to guarantee system stability. The second 

component of the system is the phase margin, which 

defines the maximum phase increase that the open 

loop system may undergo to maintain system 

stability [23], [26]. 

In the Bode diagram, the phase crossover frequency 

is gc  and the gain crossover frequency is pc . In 

contrast, the frequency at which the amplitude 

graph's slope crosses 0dB is known as the gain 

crossover frequency. Phase crossover frequency is 

the frequency value at the location on the phase 

graph where the curve cuts -180°. 

In the Bode diagram, it is defined as the GM 

amplitude margin and the PM phase margin. The 

distance between the phase value at frequency gc  

and -180° on the phase graph, respectively, is 

known as the phase margin. The amplitude margin 

on the amplitude graph is the distance of the 

amplitude value at frequency pc  from 0dB. 

The gain crossover frequency requirements for the 

Bode diagram that will be utilized in this inquiry are 

provided by the following presentations. 

( )
gcs j

s PMG



=

 = −  (3) 

( ) 1
gcs j

sG
=

=   (4) 

Similarly, the phase crossover frequency 

requirements for the Bode diagram that will be 

utilized in this study are provided as follows. 

( )
pcs j

G s



=

 = −  (5) 

/20( ) 10
pc

G

s j

MG s
=

=  (6) 

It is evident that the stability and durability of the 

system over a wide range are strongly correlated 

with the gain and phase crossover frequencies of the 

bode diagram. 

 

C(s)P(s)R(s) Y(s)
-
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III. DESIGNING THE PLANT 

With exponential, time-delayed, or non-delayed 

additional gain coefficients, as well as integer, 

fractional, and complex number coefficients, the 

following is the most generic plant in a transfer 

function that may be encountered. 

( ) ( )

( ) ( )

0

0

( )

i i

k k

m e j o

i i Lsi

n e j o

k kk

P
ae jao s

K e
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 
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=
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


 (7) 

The time delay coefficients are L, and the gain is K. 

In the most generic version of the plant that has been 

proposed, the ith even component of the complex 

coefficients of the m+1 polynomial numerator is 

represented by iae , whereas the ith odd portion is 

represented by iao . kbe  represents the kth odd 

component of the complex coefficients of the n+1 

polynomial denominators in the suggested structure, 

while kbo  represents the kth even part.  

The ith even component is represented by ie , 

whereas the ith odd part of the complex exponents of 

the m+1 polynomial numerator is represented by 

io . ko  represents the kth odd component and  ke  

represents the kth even portion of the complex 

exponents of the k+1 polynomial denominator in the 

most generic form that has been presented. 

The following transfer function indicates the most 

general form of the plant frequency response. 
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By converting a complex number from exponential 

to trigonometric and back again, using Euler's 

Equation, the numerator of the plant frequency 

response may be easily expressed, as follows. 
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Similarly, the transformation of the denominator 

polynomial's complex order is represented by the 

following equation. 
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The above formulae can then be changed to 

exponential form in order to re-express the plant 

frequency response as, 
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The simple form of the plant frequency response 

given above is, 

( )
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e( ) jL

o
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The ne even component and no odd part of the 

numerator that makes up the frequency response of 

the plant are provided in the following equation. 
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The de even and do odd parts of the denominator 

that make up the frequency response of the plant are 

provided as follows. 
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The frequency response of the plant in its most 

generic form, as determined by complex number 



 

193 
 

theory, is expressed in terms of its amplitude and 

phase values as follows. 

( )( )( ) j P jP j P j e   =  (17) 

As a result, the following gives the amplitude value 

of the plant frequency response. 

2 2

2 2
( )

ne no
P j K

de do


+
=

+
 (18) 

Similarly, the following gives the phase value of the 

plant frequency response. 

( ) arctan arctan
no do

P j L
ne de

 
   

 = − −   
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 (19) 

Consequently, the formulas for calculating the 

amplitude and phase of the frequency response of 

the plant were discovered in their most general 

form. For the next step, frequency representaions of 

the PID controller including the gain and the pahse 

shoule be obtained. Then, the system’s frequency 

response could easily be ontained by using the 

equations of the plant an the controller together. The 

further equations could be derived in this direction.  

IV. CASE STUDY 

This section gives an example to verify the proposed 

method. 

Consider the following FCOP. 

0.1

1.25 0.25

1
( ) e

1

s

j
P s

s

−=
+

 (20) 

5 rad/sgc =  is considered as the optimal gain 

crossover frequency in this instance once more. 

Table 1 shows the parameters of the PID controller 

for varying values of the phase margin relative to the 

negative imaginary component. 

Table 1. Parameters of the PID contoller for varying values of 

PM relative to the negative imaginary component 

PM gc  pc  GM pk  
ik  dk  

30° 5 29.4660 -16.92980 8.87967 44.5844 0.442131 

35° 5 30.3105 -15.76230 9.43037 42.5858 0.522074 

40° 5 31.0037 -14.66440 9.90929 40.4748 0.606513 

45° 5 31.5851 -13.64010 10.31280 38.2676 0.694804 

50° 5 32.0817 -12.68820 10.63780 35.9807 0.786277 

55° 5 32.5124 -11.80570 10.88190 33.6318 0.880234 

60° 5 32.8907 -10.98900 11.04310 31.2387 0.975961 

In a similar way, Table 2 gives the parameters of the 

PID controller considering the positive imaginary 

component. 

Table 2. Parameters of the PID contoller for 

varying values of PM relative to the negative 

imaginary component 

PM gc  pc  GM pk  
ik  dk  

30° 5 15.0538 -7.74174 4.37395 10.0156 0.477540 

35° 5 15.6042 -7.33345 4.32379 9.0663 0.515516 

40° 5 16.0862 -6.92938 4.24072 8.1314 0.552909 

45° 5 16.5148 -6.53993 4.12538 7.2182 0.589436 

50° 5 16.9005 -6.17129 3.97864 6.3337 0.624819 

55° 5 17.2516 -5.82719 3.80162 5.4844 0.658788 

60° 5 17.5739 -5.50991 3.59567 4.6770 0.691086 

This result indicates that the complex number 

degree plant is inversely proportional to the positive 

imaginary component and directly affects the 

system's phase crossover frequency, in contrast to 

fractional number degree plants. 

V. CONCLUSION 

This study focuses on the most exact analysis of 

physical changes and favors the plant model with 

the most general structure, in contrast to studies in 

the literature. To do this, it is preferable to utilize an 

IOPID controller to govern plant models for 

fractional order plants (FOP), fractional complex 

order plants (FCOP), and integer order plants (IOP). 

In addition, calculation formulae for the stability 

and durability of the system are produced utilizing 

the limitations of the Bode diagram. 

Simultaneously, the response of the system to 

unanticipated load disturbance signals was 

examined. Ultimately, results and illustrations from 

each of the three application cases were generated 

in the identical conditions, and a debate over the 

relative strengths of the systems and how they 

should be physically interpreted took place. 

Although many studies in the literature employ both 

full and fractional number-based plants, we think 

our proposed study will cover all system types. 

Because the calculation equations are readily found 

in the complex topic of the study, our arguments and 

findings have the potential to be novel. As the 

resulting parameters are altered, it is expected that 

new physical behaviours would emerge and be 

evaluated in future studies. 
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