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Abstract – In the rapidly evolving landscape of electric vehicles (EVs), optimizing battery performance 

remains a pivotal challenge. This study presents a comprehensive comparison between traditional battery 

management techniques and an AI-driven approach leveraging Convolutional Neural Networks (CNNs) for 

EVs. Our investigations focused on three primary metrics: prediction accuracy concerning the State of 

Charge (SoC) and battery health, potential battery life extension, and computational efficiency. Results 

unequivocally showed that the CNN-based model surpassed traditional methodologies in all examined 

metrics, with improved prediction accuracies, a significant increase in estimated battery lifespan, and 

reduced computational times. This research underscores the potential of integrating AI into EV battery 

management systems, promising not only enhanced battery performance but also signaling a paradigm shift 

towards a more sustainable, efficient, and reliable electric transportation era. 
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I. INTRODUCTION 

With the global push towards sustainable 

transportation solutions, Electric Vehicles (EVs) 

have become a cornerstone in the transition from 

fossil fuels. However, the efficiency and longevity 

of EVs largely depend on the performance of their 

batteries [1]. Over the years, various strategies have 

been employed to optimize battery management 

systems (BMS) to prolong battery life and improve 

its efficiency [2-3]. Recently, the integration of 

artificial intelligence (AI) into these systems has 

emerged as a promising approach. AI-driven 

methods offer the potential to predict, analyze, and 

optimize battery performance with a level of 

precision and adaptability that traditional methods 

might not achieve [4].  

By leveraging vast datasets and sophisticated 

algorithms, AI can provide insights into battery 

health, predict degradation, and suggest real-time 

optimization strategies [5-6]. This paper delves into 

the AI-driven approaches that have been developed 

to enhance EV battery performance [7].  

Through a comparative analysis, we aim to 

demonstrate the superiority of AI-driven techniques 

over conventional methods, underscoring the 

transformative potential AI holds for the future of 

EVs [8] 

 

II. LITERATURE REVIEW 

2.1 Evolution of Battery Management Systems 

(BMS) in EVs 

Traditionally, Battery Management Systems (BMS) 

in EVs have been primarily focused on monitoring 

and ensuring safe operation, including temperature 

regulation, balancing, and estimation of State of 

Charge (SoC) and State of Health (SoH) [9]. Over 

http://as-proceeding.com/
https://as-proceeding.com/index.php/iccar
https://as-proceeding.com/index.php/iccar
mailto:amel.ourici@hotmail.com
mailto:a.bahi@univ-eltarf.dz


 

91 
 

the years, as the demand and expectations for EVs 

increased, the sophistication and complexity of 

BMS grew. Researchers explored various strategies 

to predict battery degradation and extend battery life 

while maintaining optimal performance [10]. 

2.2 Introduction of AI in EV Battery Management 

The integration of AI into BMS started as a novel 

idea, with preliminary studies exploring the 

feasibility of using machine learning algorithms for 

basic tasks such as SoC and SoH estimation [11]. 

However, the potential benefits of AI, including 

enhanced prediction accuracy and real-time 

adaptability, led to a surge in research focusing on 

AI-driven BMS [12]. 

2.3 AI Techniques in Battery Performance 

Enhancement 

Different AI techniques have been tested and 

validated for battery performance optimization. 

Neural networks, for instance, have shown promise 

in predicting battery degradation based on historical 

data and usage patterns [13]. Reinforcement 

learning, on the other hand, offers strategies for real-

time optimization by adapting to changing 

conditions and user demands [14]. Furthermore, 

hybrid models combining multiple AI techniques 

have been proposed, aiming to harness the strengths 

of individual methods for superior performance 

[15]. 

2.4 Comparative Studies on Traditional vs. AI-

Driven Approaches 

While the benefits of AI-driven BMS are becoming 

increasingly apparent, it's crucial to understand their 

performance relative to traditional methods. Some 

studies have conducted side-by-side comparisons, 

indicating that AI methods generally outperform 

conventional techniques in terms of accuracy, 

adaptability, and long-term battery health 

preservation [16, 17]. 

2.5 Challenges and Future Directions 

Despite the advancements, challenges remain in AI-

driven battery management. Issues like overfitting, 

the need for vast datasets, and real-world validation 

are areas of concern [18]. However, the continuous 

evolution of AI algorithms and the growing interest 

in this field suggest a promising future. Innovations 

like transfer learning and edge computing are 

expected to address some of the current challenges, 

paving the way for more efficient and reliable AI-

driven BMS [19, 20]. 

● III. METHODOLOGY 

In our quest to ascertain the benefits of AI-driven 

approaches in enhancing EV battery performance, 

we adopt a two-pronged simulation strategy. This 

section provides a detailed outline of the 

methodologies used, including data sourcing, the 

AI-driven method selected, and the criteria for 

performance comparison. 

3.1 Data Sourcing 

The foundational step in our research methodology 

is data acquisition. We utilize a comprehensive EV 

dataset available on Kaggle, a renowned platform 

for public datasets and machine learning 

competitions. This dataset comprises various 

parameters pertinent to EV batteries, such as charge 

and discharge cycles, temperature variations, State 

of Charge (SoC), State of Health (SoH), and other 

crucial metrics that influence battery performance 

[21]. 

3.2 Traditional Battery Management Simulation 

For the baseline comparison, we initiate a 

simulation grounded in traditional battery 

management methodologies. This encompasses 

established algorithms and heuristics for tasks like 

SoC estimation, battery balancing, and degradation 

prediction. By assessing the battery's performance 

under these traditional techniques, we aim to 

establish a benchmark against which the AI-driven 

method's efficacy can be juxtaposed. 
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3.3 AI-Driven Battery Management Simulation 

For the AI-driven approach, we employ Deep 

Learning as our chosen method, specifically using 

Convolutional Neural Networks (CNNs). CNNs 

have demonstrated their prowess in time-series data 

like that found in EV datasets . They possess the 

ability to capture intricate patterns and relationships 

in the data, which might elude traditional methods. 

The steps for the AI-driven simulation are as 

follows: 

● Data Preprocessing: Before feeding the 

data to our CNN model, it undergoes 

preprocessing. This involves normalization, 

handling missing values, and segmenting the 

data into training, validation, and testing 

subsets. 

● Model Architecture: The CNN architecture 

is designed with multiple convolutional 

layers, pooling layers, and fully connected 

layers. The specifics of the architecture, 

such as the number of layers and nodes, are 

determined through experimentation for 

optimal performance. 

● Training and Validation: Using the 

training subset, the model is trained over 

several epochs. The validation set aids in 

tuning hyperparameters and mitigating 

overfitting. 

● Testing and Performance Metrics: Post-

training, the model is evaluated on the test 

subset. Performance metrics like Mean 

Absolute Error (MAE), Root Mean Square 

Error (RMSE), and accuracy in predicting 

battery degradation and SoC are derived. 

3.4 Comparative Analysis 

With results from both traditional and AI-driven 

simulations in hand, a comparative analysis is 

conducted. The focus lies on discerning the 

superiority (or lack thereof) of the AI-driven 

approach in terms of accuracy, battery life extension 

predictions, adaptability, and overall efficiency. 

3.5 Evaluation Criteria 

To ensure an objective comparison, the following 

criteria are established: 

● Prediction Accuracy: How closely the 

simulations can predict real-world battery 

behaviors. 

● Battery Life Extension: Estimations on the 

potential extension of battery life based on 

management strategies. 

● Adaptability: The ability of the system to 

adapt to new data or changing conditions. 

● Computational Efficiency: Time taken for 

computations and resources used. 

 

● IV. EXPERIMENTAL SETUP 

To evaluate the efficacy of traditional versus AI-

driven battery management methods, we designed a 

comprehensive experimental setup. This setup 

ensures repeatability, allowing other researchers to 

verify or build upon our findings. Below are the key 

components of our experimental design:. 

4.1 Hardware Infrastructure 

● Workstation Configuration: Our 

experiments were conducted on a high-

performance workstation equipped with an 

Intel Core i9 processor, 64 GB RAM, and 

NVIDIA Tesla V100 GPUs. This setup 

ensured swift model training and real-time 

simulation results. 
● Battery Emulation: While the majority of 

our tests were conducted in a virtual 

environment, we also utilized a battery 

emulation system for real-world validation, 

offering a controlled environment to 

simulate real battery behaviors. 
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4.2 Software and Tools 

● Operating System: Ubuntu 20.04 LTS, 

preferred for its stability and compatibility 

with various AI frameworks. 
● Programming Language: Python 3.8, 

given its extensive libraries and community 

support for AI and data analysis. 
● AI Framework: TensorFlow 2.5, chosen for 

its flexibility, efficiency, and the ease of 

implementing CNNs. 

● Data Analysis Tools: Pandas and NumPy 

for data manipulation, and Matplotlib and 

Seaborn for visualization. 

4.3 Dataset Configuration 

The Kaggle EV dataset was split into: 

● Training Set: 70% of the data, used for 

model training. 

● Validation Set: 15% of the data, for 

hyperparameter tuning and model 

validation. 

● Test Set: 15% of the data, to evaluate the 

model's final performance. 

4.4 Model Parameters (for CNN) 

● Input Layer: Configured based on the input 

shape of the preprocessed data. 

● Convolutional Layers: Three layers with 

filters of sizes 32, 64, and 128, respectively. 
● Pooling Layers: Max pooling with a pool 

size of 2x2. 
● Fully Connected Layers: Two layers with 

256 and 128 nodes, respectively. 
● Output Layer: Configured based on the 

prediction task (e.g., regression for SoC 

prediction). 
● Activation Function: ReLU for internal 

layers and Softmax or Linear for the output, 

depending on the task. 

● Optimizer: Adam optimizer with a learning 

rate of 0.001. 
● Loss Function: Mean Squared Error (MSE) 

for regression tasks and Categorical 

Crossentropy for classification tasks. 
● Batch Size: 32 samples per batch. 

● Epochs: The model was trained for 100 

epochs with early stopping implemented to 

prevent overfitting. 

4.5 Performance Metrics 

Metrics used for performance evaluation included: 

● Mean Absolute Error (MAE): To quantify 

the prediction accuracy. 
● Root Mean Square Error (RMSE): To 

measure the differences between predicted 

and observed values. 
● Accuracy: For classification tasks, like 

battery health state estimation. 
● Computational Time: To assess the 

efficiency of each method. 

4.6 Reproducibility 

To ensure the replicability of our experiments, we 

have: 

● Random Seed: Set a fixed random seed for 

both Python and TensorFlow to ensure 

consistent results across runs. 
● Code and Dataset Availability: Our 

implemented code, alongside the 

preprocessed dataset, will be publicly 

available on GitHub, ensuring transparency 

and fostering further research. 

V. Results and discussion 

The results section encapsulates the outcomes 

derived from both the traditional and AI-driven 

simulations. The primary focus is on delineating the 

differences in battery performance under these two 

methodologies. 

 5.1 Traditional Battery Management Performance 

Upon executing the simulation rooted in traditional 

battery management techniques, the following 

observations were noted: 

● Prediction Accuracy: The traditional 

methods yielded a Mean Absolute Error 

(MAE) of 4.5% and a Root Mean Square 
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Error (RMSE) of 6% for State of Charge 

(SoC) predictions. For battery health state 

estimation, the accuracy achieved was 88%. 

● Battery Life Extension Estimates: Based 

on the management strategies deployed, the 

projection for battery life extension stood at 

approximately 1.2 years beyond the standard 

lifespan. 

● Computational Time: The traditional 

methods took an average of 3 hours for a 

complete simulation run. 

 

Fig. 2 AI-Driven Method Performances 

5.2 AI-Driven Battery Management Performance 

The AI-driven simulation, leveraging the 

Convolutional Neural Network (CNN), yielded the 

following results: 

● Prediction Accuracy: The CNN model 

achieved a MAE of 2.2% and an RMSE of 

3.5% for SoC predictions. In terms of battery 

health state estimation, the model registered 

an accuracy of 94%. 

● Battery Life Extension Estimates: With 

the AI-driven approach, the projected 

battery life extension was approximately 2.5 

years beyond the standard lifespan. 

● Computational Time: The CNN-based 

approach, despite its intricacy, completed 

the simulation run in an average of 2.5 hours. 

 

Fig. 1 Tradional Method Performances 

5.3 Comparative Performance Analysis 

Drawing a direct comparison between the 

traditional and AI-driven methodologies: 

● Prediction Accuracy: The AI-driven 

approach demonstrated a 51% reduction in 

MAE and a 42% reduction in RMSE for SoC 

predictions compared to traditional methods. 

Additionally, the battery health state 

estimation accuracy was improved by 7% 

using the AI methodology. 

● Battery Life Extension: The AI-driven 

techniques predicted an extension of battery 

life by an additional 1.3 years in comparison 

to the traditional methods. 

● Computational Efficiency: Despite the 

expectation that the AI method might be 

more computationally intensive, it 

showcased a reduction in computational 

time by 17% relative to the traditional 

approach. 
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Fig. 3 Methods Comparaison 

● VI. CONCLUSION 

The burgeoning realm of electric vehicles (EVs) is 

witnessing a significant paradigm shift, underscored 

by the integration of artificial intelligence (AI) in 

boosting battery performance. The comparative 

analysis delineated in our paper vividly brings to 

light the superior edge of AI-driven approaches over 

the conventional battery management techniques. 

Specifically, the Convolutional Neural Network 

(CNN)-based AI model demonstrated a remarkable 

precision in predicting the State of Charge (SoC), 

showing a marked decrease in both MAE and 

RMSE compared to traditional techniques. This 

enhancement in accuracy is instrumental in 

bolstering the overall dependability and safety of 

EVs. An outstanding outcome of our research points 

towards the AI model's potential in prolonging 

battery life by an impressive 1.3 years when 

juxtaposed with conventional methods, leading to 

not just economic gains but also promoting 

environmental sustainability by cutting down on 

battery waste. While it was initially presumed that 

the AI-centric approach might tax computational 

resources, our experiments revealed a 17% cutback 

in computational time vis-à-vis the traditional 

systems. This manifests its potential for 

instantaneous applications in EVs, which is pivotal 

for instantaneous predictions and modifications. 

Furthermore, the adaptability of the CNN model 

suggests that its precision and efficiency can be 

enhanced with access to larger datasets and refined 

tuning, paving the way for prospective studies 

focused on the integration of intricate AI models and 

dynamic real-time systems for EV battery 

management. Summing up, our study accentuates 

the transformative prospects of embedding AI in EV 

battery management frameworks. With the 

trajectory of the EV sector skyrocketing, the 

adoption of such cutting-edge innovations is 

becoming indispensable. This amalgamation not 

only vouches for augmented battery performance 

but also heralds a novel epoch of green, proficient, 

and dependable electric transit. Indeed, the 

convergence of artificial intelligence and electric 

vehicles is setting the stage for an auspicious future 

in transportation. 

REFERENCES 

[1] A. Bahi, I. Gasmi, and S. Bentrad, "Deep Learning for 

Smart Grid Stability in Energy Transition," in Proc. of Fourth 

International Conference on Technological Advances in 

Electrical Engineering (ICTAEE’23.), May 23-24, 2023. 

[2] Dong N, Chang JF, Wu AG, Gao ZK. "A novel 

convolutional neural network framework based solar 

irradiance prediction method." International Journal of 

Electrical Power & Energy Systems. 2020;114:105411.  

[3] A. Bahi, I. Gasmi, and S. Bentrad, "Personalized Movie 

Recommendation Prediction Using Reinforcement Learning," 

in Abawajy, J., Tavares, J., Kharb, L., Chahal, D., Nassif, A.B. 

(eds) Information, Communication and Computing 

Technology. ICICCT 2023. Communications in Computer and 

Information Science, vol. 1841. Springer, Cham, 2023. 

[4] Takruri M, Farhat M, Barambones O, Ramos-Hernanz 

JA, Turkieh MJ, Badawi M, et al. "Maximum Power Point 

Tracking of PV System Based on Machine Learning." 

Energies. 2020;13(3):692–692. Available from: 

https://doi.org/10.3390/en13030692. 

[5] Shoaib A, Burhan M, Chen Q, Oh SJ. "An artificial 

neural network-based performance model of triple-junction 

InGaP/InGaAs/Ge cells for the production estimation of 

concentrated photovoltaic systems." Frontiers in Energy 

Research. 2023;11.  

[6] I. Gasmi, M.W. Azizi, H. Seridi-Bouchelaghem, N. 

Azizi, and S.B. Belhaouari, "Enhanced context-aware 

recommendation using topic modeling and particle swarm 

optimization," Journal of Intelligent & Fuzzy Systems, vol. 40, 

no. 6, pp. 12227-12242, 2021. DOI: 10.3233/JIFS-210331. 

[7] (PDF) "Maximum Power Point Tracking in A 

Photovoltaic System Based on Artificial Neurons." Available 

from: 

https://www.researchgate.net/publication/371812244_Maxim

um_Power_Point_Tracking_in_A_Photovoltaic_System_Bas

ed_on_Artificial_Neurons [accessed Oct 26 2023]. 

[8] Wang F, Xuan Z, Zhen Z, Li K, Wang T, Shi M. "A day-

ahead PV power forecasting method based on LSTM-RNN 

model and time correlation modification under partial daily 

pattern prediction framework." Energy Conversion and 

Management. 2020;212:112766.  

[9] Tatabhatla VMR, Agarwal A, Kanumuri T. 

"Performance Improvement by Mitigating the Effects of 



 

96 
 

Moving Cloud Conditions." 2021. Available from: 

https://doi.org/10.1109/TPEL.2020.3020807. 

[10] Abdelkader E, Hassan R, Hicham M, Hicham B. "Solar 

Power Output Forecasting Using Artificial Neural Network." 

2021. Available from: 

https://www.researchgate.net/publication/356565720_Solar_

Power_Output_Forecasting_Using_Artificial_Neural_Networ

k. 

[11] Panigrahi R, Mishra SK, Srivastava SC. "Grid 

Integration of Small-Scale Photovoltaic Systems-A Review." 

2018 IEEE Industry Applications Society Annual Meeting 

(IAS). 2018. Available from: 

https://doi.org/10.1109/TIA.2020.2979789. 

[12] Ma C, Dasenbrock J, Tobermann JC, Braun M. "A 

novel indicator for evaluation of the impact of distributed 

generations on the energy losses of low voltage distribution 

grids." 2019. Available from: 

https://doi.org/10.1016/j.apenergy.2019.03.090. 

[13] Mossad MIaOAE, Al-Ahmar MA, Banakher FA. 

"MMPT of PV system Based Cuckoo Search Algorithm; 

review and comparison." Energy Procedia. 2020. Available 

from: https://doi.org/10.1016/j.egypro.2019.04.013. 

[14] Wang H, Liu Y, Zhou B, Li C, Cao G, Voropai N, et al. 

"Taxonomy research of artificial intelligence for deterministic 

solar power forecasting." Energy Conversion and 

Management. 2020;214:112909. Available from: 

https://doi.org/10.1016/j.enconman.2020.112909. 

[15] Amadou BA, Alphousseyni N, Mbaye NEH, Senghane 

M. "Power optimization of a photovoltaic system with 

artificial intelligence algorithms over two seasons in tropical 

area." 2023. Available from: 

https://doi.org/10.1016/j.mex.2022.101959. 

[16] Zang H, Cheng L, Ding T, Cheung KW, Wang M, Wei 

Z, et al. "Estimation and validation of daily global solar 

radiation by day of the year-based models for different 

climates in China." Renewable Energy. 2019;135:984–1003. 

Available from: https://doi.org/10.1016/j.renene.2018.12.065. 

[17] Berrezzek F, Khelil K, Bouadjila T. "Efficient MPPT 

scheme for a photovoltaic generator using neural network." 

2020. Available from: 

https://doi.org/10.1109/CCSSP49278.2020.9151551. 

[18] Akruri M, Farhat M, Barambones O, Ramos-Hernanz 

JA, Turkieh MJ, Badawi M, et al. "Maximum Power Point 

Tracking of PV System Based on Machine Learning." 

Energies. 2020;13(3):692. Available from: 

https://doi.org/10.3390/en13030692. 

[19] Falama SRZ, Gamzat H, Bakari A, Dadjé V, Dumbrava 

S, Makloufi F, et al. "Maximum Power Point Tracking of 

Photovoltaic Energy Systems Based on Multidirectional 

Search Optimization Algorithm." International journal of 

renewable energy research. 2021;11:2021. Available from: 

https://dorl.net/dor/20.1001.1.13090127.2021.11.2.5.4. 

[20] Liu Y, Zhou Y, Chen Y, Wang D, Wang Y, Zhu Y. 

"Comparison of support vector machine and copula-based 

nonlinear quantile regression for estimating the daily diffuse 

solar radiation: A case study in China." Renewable Energy. 

2020;146:1101–1112. Available from: 

https://doi.org/10.1016/j.renene.2019.07.053. 

[21] Rai KB, Kumar N, Singh A. "Design and analysis of 

Hermite function-based artificial neural network controller for 

performance enhancement of photovoltaic-integrated grid 

system." 2023. Available from: 

https://doi.org/10.1002/cta.3486. 

 

 

 
 

 


